數(shù)列解題方法一
高考數(shù)學數(shù)列解題方法:
錯位相減法:錯位相減法主要應用于等比數(shù)列的求和中,在最近幾年的高考試題當中,以此方法來求解數(shù)列求和的試題經(jīng)常會有所體現(xiàn)。這一類型的試題解題方法主要是運用于諸如{等差數(shù)列?等比數(shù)列}數(shù)列前n項和的求和中。錯位相減法主要應用于形如an=bncn,即等差數(shù)列?等比數(shù)列,這樣的數(shù)列求和試題運算中,解此類題的技巧是:首先分別列出等差數(shù)列和等比數(shù)列的前n的和,即Sn,然后再分別將Sn的兩側同時乘以等比數(shù)列的公比q,得出qSn;最后錯一位,再將兩邊的式子進行相減就可以了。
分組法求和:在高中數(shù)列的試題當中,往往會遇到一部分沒有規(guī)律的數(shù)列試題,它們初看上去既不屬于等差數(shù)列也不屬于等比數(shù)列,但是如果將此類型的數(shù)列進行拆分,就可以得到我們所了解的等差數(shù)列和等比數(shù)列,遇到此類型的數(shù)列試題,我們就可以通過分組法求和的方法進行解題,首先將數(shù)列進行拆分,通過得到的等差數(shù)列和等比數(shù)列進行運算,最后將其結合在一起得出試題的答案。
合并法求和:在高考數(shù)列的試題中,往往會遇到一些非常特殊的題型,它們初看上去沒有規(guī)律可循,但是通過合并和拆分,就可以找出它們的特殊性質。這就要求我們教師平時要鍛煉學生對數(shù)列的合并能力,通過合并找出規(guī)律,最終成功地解決這類特殊數(shù)列的求和問題。
數(shù)列解題方法二
易錯知識點:
用錯基本公式致誤錯因分析:等差數(shù)列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時,前n項和公式Sn=na1。在數(shù)列的基礎性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。
錯位相減求和時項數(shù)處理不當致誤錯因分析:錯位相減求和法的適用環(huán)境是:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,得到的和式要分三個部分:(1)原來數(shù)列的第一項;(2)一個等比數(shù)列的前(n-1)項的和;(3)原來數(shù)列的第n項乘以公比后在作差時出現(xiàn)的。在用錯位相減法求數(shù)列的和時一定要注意處理好這三個部分,否則就會出錯。
an,Sn關系不清致誤錯因分析:在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在關系:這個關系是對任意數(shù)列都成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。當題目中給出了數(shù)列{an}的an與Sn之間的關系時,這兩者之間可以進行相互轉換,知道了an的具體表達式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉換的相互性。
數(shù)列解題方法三
學習方法:
必須熟悉各種基本題型并掌握其解法。課本上的每一道練習題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習題,也有許多基本題型,其運用方法較多,針對性也強,應該能夠迅速做出。許多綜合題只是若干個基本題的有機結合,基本題掌握了,不愁解不了它們。
在解題過程中有意識地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢。數(shù)學是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎。
多做綜合題。綜合題,由于用到的知識點較多,頗受命題人青睞。做綜合題也是檢驗自己學習成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數(shù)學水平不斷提高!岸嘧鼍毩暋币L期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。